【英语】integral的例句
时间: 2024-11-07 20:40:08
(部分内容来自网络,其真实性存疑,为了避免对您造成误导,请谨慎甄别。)
1. Calculating the integral of a function can be a complex and time-consuming process.
计算函数的积分可能是一个复杂而耗时的过程。
2. The integral of the function f(x) from a to b can be denoted as ∫f(x)dx from a to b.
函数f(x)从a到b的积分可以表示为∫f(x)dx从a到b。
3. The integral of a constant function is simply the constant multiplied by the interval length.
常数函数的积分就是常数乘以区间长度。
4. Integrals are used in calculus to find the area under a curve or the accumulation of a quantity over a given interval.
积分在微积分中用于找到曲线下的面积或在给定区间内的数量累积。
5. The integral of the velocity function gives the total distance traveled by an object over a given time period.
速度函数的积分给出了物体在给定时间段内行驶的总距离。
6. The concept of integral calculus is fundamental to understanding the behavior of functions and their relationship to area and accumulation.
积分微积分的概念对于理解函数的行为及其与面积和积累的关系至关重要。
7. The integral of the function over the interval [a, b] can be interpreted as the net area between the curve and the x-axis.
函数在区间[a,b]上的积分可以解释为曲线与x轴之间的净面积。
8. In physics, integrals are used to calculate quantities such as work, energy, and momentum.
在物理学中,积分用于计算工作、能量和动量等量。
9. The integral of the force function with respect to displacement gives the work done by the force on an object.
力函数关于位移的积分给出了力对物体所做的功。
10. The concept of integral is closely related to the concept of antiderivative in calculus.
积分的概念与微积分中的反导数概念密切相关。
11. The definite integral of a function represents the accumulated change of the function over a given interval.
函数的定积分表示了在给定区间内函数的累积变化。
12. Integrals can be approximated using numerical methods such as the trapezoidal rule or Simpson's rule.
积分可以用数值方法如梯形法则或辛普森法则来近似计算。
13. The integral of the function gives the total area between the curve and the x-axis over a given interval.
函数的积分给出了在给定区间内曲线与x轴之间的总面积。
14. The fundamental theorem of calculus relates the concept of integral to the concept of derivative.
微积分基本定理将积分的概念与导数的概念联系起来。
15. The integral of a probability density function gives the probability of a random variable falling within a certain range.
概率密度函数的积分给出了随机变量落在一定范围内的概率。
16. The integral of a function can be interpreted as the limit of a sum of the function's values multiplied by infinitesimal intervals.
函数的积分可以解释为函数值乘以无穷小区间的总和的极限。
17. The concept of integral is essential in understanding the concept of area under a curve in mathematics.
积分的概念在理解数学中曲线下的面积的概念中至关重要。
18. The integral of the function f(x) from 0 to x gives the accumulated change of the function up to the point x.
函数f(x)从0到x的积分给出了到点x的函数的累积变化。
19. The integral of a rate function gives the total quantity accumulated over a given time interval.
速率函数的积分给出了在给定时间间隔内累积的总量。
20. The concept of integral is used in various fields such as physics, engineering, economics, and statistics to solve real-world problems.
积分的概念被应用在物理学、工程学、经济学和统计学等各个领域中,以解决现实世界中的问题。